Copied to
clipboard

G = C2×C32⋊He3order 486 = 2·35

Direct product of C2 and C32⋊He3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2×C32⋊He3, C3411C6, (C3×C6)⋊He3, (C6×He3)⋊2C3, C334(C3×C6), (C33×C6)⋊1C3, C6.3(C3×He3), C3.3(C6×He3), (C3×He3)⋊14C6, C322(C2×He3), (C3×C6).20C33, (C32×C6)⋊1C32, C32.24(C32×C6), SmallGroup(486,196)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C32⋊He3
C1C3C32C33C34C32⋊He3 — C2×C32⋊He3
C1C32 — C2×C32⋊He3
C1C3×C6 — C2×C32⋊He3

Generators and relations for C2×C32⋊He3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 1062 in 378 conjugacy classes, 90 normal (8 characteristic)
C1, C2, C3, C3, C6, C6, C32, C32, C32, C3×C6, C3×C6, C3×C6, He3, C33, C33, C2×He3, C32×C6, C32×C6, C3×He3, C34, C6×He3, C33×C6, C32⋊He3, C2×C32⋊He3
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C33, C2×He3, C32×C6, C3×He3, C6×He3, C32⋊He3, C2×C32⋊He3

Smallest permutation representation of C2×C32⋊He3
On 54 points
Generators in S54
(1 38)(2 39)(3 37)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 35)(11 36)(12 34)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 15 11)(2 13 12)(3 14 10)(4 53 8)(5 54 9)(6 52 7)(16 24 20)(17 22 21)(18 23 19)(25 33 29)(26 31 30)(27 32 28)(34 39 40)(35 37 41)(36 38 42)(43 51 47)(44 49 48)(45 50 46)
(1 3 2)(4 5 6)(7 8 9)(10 12 11)(13 15 14)(16 24 20)(17 22 21)(18 23 19)(25 26 27)(28 29 30)(31 32 33)(34 36 35)(37 39 38)(40 42 41)(43 51 47)(44 49 48)(45 50 46)(52 53 54)
(1 13 10)(2 14 11)(3 15 12)(4 9 52)(5 7 53)(6 8 54)(16 17 18)(19 20 21)(22 23 24)(25 30 32)(26 28 33)(27 29 31)(34 37 42)(35 38 40)(36 39 41)(43 44 45)(46 47 48)(49 50 51)
(1 31 17)(2 28 19)(3 25 24)(4 49 42)(5 46 39)(6 43 35)(7 47 41)(8 44 38)(9 50 34)(10 29 16)(11 26 21)(12 32 23)(13 27 18)(14 33 20)(15 30 22)(36 53 48)(37 52 51)(40 54 45)

G:=sub<Sym(54)| (1,38)(2,39)(3,37)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,35)(11,36)(12,34)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,15,11)(2,13,12)(3,14,10)(4,53,8)(5,54,9)(6,52,7)(16,24,20)(17,22,21)(18,23,19)(25,33,29)(26,31,30)(27,32,28)(34,39,40)(35,37,41)(36,38,42)(43,51,47)(44,49,48)(45,50,46), (1,3,2)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(16,24,20)(17,22,21)(18,23,19)(25,26,27)(28,29,30)(31,32,33)(34,36,35)(37,39,38)(40,42,41)(43,51,47)(44,49,48)(45,50,46)(52,53,54), (1,13,10)(2,14,11)(3,15,12)(4,9,52)(5,7,53)(6,8,54)(16,17,18)(19,20,21)(22,23,24)(25,30,32)(26,28,33)(27,29,31)(34,37,42)(35,38,40)(36,39,41)(43,44,45)(46,47,48)(49,50,51), (1,31,17)(2,28,19)(3,25,24)(4,49,42)(5,46,39)(6,43,35)(7,47,41)(8,44,38)(9,50,34)(10,29,16)(11,26,21)(12,32,23)(13,27,18)(14,33,20)(15,30,22)(36,53,48)(37,52,51)(40,54,45)>;

G:=Group( (1,38)(2,39)(3,37)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,35)(11,36)(12,34)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,15,11)(2,13,12)(3,14,10)(4,53,8)(5,54,9)(6,52,7)(16,24,20)(17,22,21)(18,23,19)(25,33,29)(26,31,30)(27,32,28)(34,39,40)(35,37,41)(36,38,42)(43,51,47)(44,49,48)(45,50,46), (1,3,2)(4,5,6)(7,8,9)(10,12,11)(13,15,14)(16,24,20)(17,22,21)(18,23,19)(25,26,27)(28,29,30)(31,32,33)(34,36,35)(37,39,38)(40,42,41)(43,51,47)(44,49,48)(45,50,46)(52,53,54), (1,13,10)(2,14,11)(3,15,12)(4,9,52)(5,7,53)(6,8,54)(16,17,18)(19,20,21)(22,23,24)(25,30,32)(26,28,33)(27,29,31)(34,37,42)(35,38,40)(36,39,41)(43,44,45)(46,47,48)(49,50,51), (1,31,17)(2,28,19)(3,25,24)(4,49,42)(5,46,39)(6,43,35)(7,47,41)(8,44,38)(9,50,34)(10,29,16)(11,26,21)(12,32,23)(13,27,18)(14,33,20)(15,30,22)(36,53,48)(37,52,51)(40,54,45) );

G=PermutationGroup([[(1,38),(2,39),(3,37),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,35),(11,36),(12,34),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,15,11),(2,13,12),(3,14,10),(4,53,8),(5,54,9),(6,52,7),(16,24,20),(17,22,21),(18,23,19),(25,33,29),(26,31,30),(27,32,28),(34,39,40),(35,37,41),(36,38,42),(43,51,47),(44,49,48),(45,50,46)], [(1,3,2),(4,5,6),(7,8,9),(10,12,11),(13,15,14),(16,24,20),(17,22,21),(18,23,19),(25,26,27),(28,29,30),(31,32,33),(34,36,35),(37,39,38),(40,42,41),(43,51,47),(44,49,48),(45,50,46),(52,53,54)], [(1,13,10),(2,14,11),(3,15,12),(4,9,52),(5,7,53),(6,8,54),(16,17,18),(19,20,21),(22,23,24),(25,30,32),(26,28,33),(27,29,31),(34,37,42),(35,38,40),(36,39,41),(43,44,45),(46,47,48),(49,50,51)], [(1,31,17),(2,28,19),(3,25,24),(4,49,42),(5,46,39),(6,43,35),(7,47,41),(8,44,38),(9,50,34),(10,29,16),(11,26,21),(12,32,23),(13,27,18),(14,33,20),(15,30,22),(36,53,48),(37,52,51),(40,54,45)]])

102 conjugacy classes

class 1  2 3A···3H3I···3AF3AG···3AX6A···6H6I···6AF6AG···6AX
order123···33···33···36···66···66···6
size111···13···39···91···13···39···9

102 irreducible representations

dim11111133
type++
imageC1C2C3C3C6C6He3C2×He3
kernelC2×C32⋊He3C32⋊He3C6×He3C33×C6C3×He3C34C3×C6C32
# reps112422422424

Matrix representation of C2×C32⋊He3 in GL6(𝔽7)

600000
060000
006000
000100
000010
000001
,
200000
040000
001000
000400
000010
000342
,
200000
020000
002000
000200
000020
000002
,
400000
020000
001000
000200
000020
000002
,
400000
040000
004000
000100
000010
000001
,
010000
001000
100000
000010
000536
000004

G:=sub<GL(6,GF(7))| [6,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,3,0,0,0,0,1,4,0,0,0,0,0,2],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,1,3,0,0,0,0,0,6,4] >;

C2×C32⋊He3 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes {\rm He}_3
% in TeX

G:=Group("C2xC3^2:He3");
// GroupNames label

G:=SmallGroup(486,196);
// by ID

G=gap.SmallGroup(486,196);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,2169]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
×
𝔽